If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-72x^2+63x=0
a = -72; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-72)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-72}=\frac{-126}{-144} =7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-72}=\frac{0}{-144} =0 $
| 1x-4x+7=-2 | | 1/2(x+x+6)×9=180 | | 1/2p-2=4 | | 2y^2-11=25 | | -2+3x=-(×-6)-2 | | 13^x=1/3 | | 4(1-3x=52 | | -2+3x=-(×-6) | | 7z-3=4z-1 | | (3x)^3=81^(2x-5) | | -4*w=8 | | 5x.4=60 | | 3x/6+x/6=4 | | 5p-3=1 | | 12x-12+4x+28=180 | | 0.4x+0.9=-1.9 | | 6-3(3+4x)-3=-6 | | 11p-2=45 | | 5y-8=5y-2 | | 48-(3c+4=4(c+7)+c | | -6s-14=4s+2 | | -2b+8=1/2b+2 | | 48+(3c+4)=4(c+7)+c | | 4y+5=105 | | 2(x-7)=27 | | 6x-66=84 | | -x/2+120=x | | 2n2+2n=1800 | | -79x=-300 | | 5z-35=115 | | 3(m+3=27 | | 5z-35=65 |